PR Archives:  LatestBy Company By Date


Press Release -- August 28th, 2024
Source: uncategorized
Tags:

Open RAN Automation a $700 Million Opportunity, Says SNS Telecom & IT

28th August 2024: SNS Telecom & IT‘s latest research report indicates that global spending on Open RAN automation software and services will reach nearly $700 Million by the end of 2027.

Automation of the RAN (Radio Access Network) – the most expensive, technically complex and power-intensive part of cellular infrastructure – is a key aspect of mobile operators’ digital transformation strategies aimed at reducing their TCO (Total Cost of Ownership), improving network quality and achieving revenue generation targets. In conjunction with AI (Artificial Intelligence) and ML (Machine Learning), RAN automation has the potential to significantly transform mobile network economics by reducing the OpEx (Operating Expenditure)-to-revenue ratio, minimizing energy consumption, lowering CO2 (Carbon Dioxide) emissions, deferring avoidable CapEx (Captial Expenditure), optimizing performance, improving user experience and enabling new services.

The RAN automation market traces its origins to the beginning of the LTE era when SON (Self-Organizing Network) technology was introduced to reduce cellular network complexity through self-configuration, self-optimization and self-healing. While embedded D-SON (Distributed SON) capabilities such as ANR (Automatic Neighbor Relations) have become a standard feature in RAN products, C-SON (Centralized SON) solutions that abstract control from edge nodes for network-wide actions have been adopted by less than a third of world’s approximately 800 national mobile operators due to constraints associated with multi-vendor interoperability, scalability and latency.

These shortcomings, together with the cellular industry’s shift towards open interfaces, common information models, virtualization and software-driven networking, are driving a transition from the traditional D-SON and C-SON approach to Open RAN automation with standards-based components – specifically the Near-RT (Real-Time) and Non-RT RICs (RAN Intelligent Controllers), SMO (Service Management & Orchestration) framework, xApps (Extended Applications) and rApps (RAN Applications) – that enable greater levels of RAN programmability and automation.

Along with the ongoing SON to RIC transition, RAN automation use cases have also evolved over the last decade. For example, relatively basic MLB (Mobility Load Balancing) capabilities have metamorphosed into more sophisticated policy-guided traffic steering applications that utilize AI/ML-driven optimization algorithms to efficiently adapt to peaks and troughs in network load and service usage by dynamically managing and redistributing traffic across radio resources and frequency layers.

Due to the much higher density of radios and cell sites in the 5G era, energy efficiency has emerged as one of the most prioritized use cases of RAN automation as forward-thinking mobile operators push ahead with sustainability initiatives to reduce energy consumption, carbon emissions and operating costs without degrading network quality. Some of the other use cases that have garnered considerable interest from the operator community include network slicing enablement, application-aware optimization and anomaly detection.

While the benefits of SON-based RAN automation in live networks are well-known, expectations are even higher with the RIC, SMO and x/rApps approach. For example, Japanese brownfield operator NTT DoCoMo expects to lower its TCO by up to 30% and decrease power consumption at base stations by as much as 50% using Open RAN automation. It is worth highlighting that domestic rival Rakuten Mobile has already achieved approximately 17% energy savings per cell in its live network using RIC-hosted RAN automation applications. Following successful lab trials, the greenfield operator aims to increase savings to 25% with more sophisticated AI/ML models.

Although Open RAN automation efforts seemingly lost momentum beyond the field trial phase for the past couple of years, several commercial engagements have emerged since then, with much of the initial focus on the SMO, Non-RT RIC and rApps for automated management and optimization across Open RAN, purpose-built and hybrid RAN environments. Within the framework of its five-year $14 Billion Open RAN infrastructure contract with Ericsson, AT&T is adopting the Swedish telecommunications giant’s SMO and Non-RT RIC solution to replace two legacy C-SON systems. In neighboring Canada, Telus has also initiated the implementation of an SMO and RIC platform along with its multi-vendor Open RAN deployment to transform up to 50% of its RAN footprint and swap out Huawei equipment from its 4G/5G network.

Similar efforts are also underway in other regions. For example, in Europe, Swisscom is deploying an SMO and Non-RT RIC platform to provide multi-technology network management and automation capabilities as part of a wider effort to future-proof its brownfield mobile network, while Deutsche Telekom is progressing with plans to develop its own vendor-independent SMO framework. Open RAN automation is also expected to be introduced as part of Vodafone Group’s global tender for refreshing 170,000 cell sites.

SNS Telecom & IT estimates that global spending on RIC, SMO and x/rApps will grow at a CAGR of more than 125% between 2024 and 2027 alongside the second wave of Open RAN infrastructure rollouts by brownfield operators. The Open RAN automation market will eventually account for nearly $700 Million in annual investments by the end of 2027 as standardization gaps and technical challenges in terms of the SMO-to-Non-RT RIC interface, application portability across RIC platforms and conflict mitigation between x/rApps are ironed out. The wider RAN automation software and services market – which includes Open RAN automation, RAN vendor SON solutions, third party C-SON platforms, baseband-integrated intelligent RAN applications, RAN planning and optimization software, and test/measurement solutions – is expected to grow at a CAGR of approximately 8% during the same period.

The “RAN Automation, SON, RIC, xApps & rApps in the 5G Era: 2024 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the RAN automation market, including the value chain, market drivers, barriers to uptake, enabling technologies, functional areas, use cases, key trends, future roadmap, standardization, case studies, ecosystem player profiles and strategies. The report also provides global and regional market size forecasts for RAN and end-to-end mobile network automation from 2024 to 2030. The forecasts cover three network domains, nine functional areas, three access technologies and five regional markets.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.

The report will be of value to current and future potential investors in the RAN automation market, as well as RAN infrastructure vendors, SON, RIC and SMO platform providers, x/rApp developers, AI/ML technology specialists, RAN planning and optimization software suppliers, test/measurement solution providers, mobile operators and other ecosystem participants seeking to expand their knowledge of the sector.

For further information concerning the SNS Telecom & IT publication “RAN Automation, SON, RIC, xApps & rApps in the 5G Era: 2024 – 2030 – Opportunities, Challenges, Strategies & Forecasts” please visit: https://www.snstelecom.com/son

For a sample, please contact info@snstelecom.com

Notes for Editors

If you are interested in a more detailed overview of this report, please send an e-mail to info@snstelecom.com

About SNS Telecom & IT

SNS Telecom & IT is a global market intelligence and consulting firm with a primary focus on the telecommunications and information technology industries. Developed by in-house subject matter experts, our market intelligence and research reports provide unique insights on both established and emerging technologies. Our areas of coverage include but are not limited to 6G, 5G, LTE, Open RAN, vRAN (Virtualized RAN), small cells, mobile core, xHaul (Fronthaul, Midhaul & Backhaul) transport, network automation, mobile operator services, FWA (Fixed Wireless Access), neutral host networks, private 4G/5G cellular networks, public safety broadband, critical communications, MCX (Mission-Critical PTT, Video & Data), IIoT (Industrial IoT), V2X (Vehicle-to-Everything) communications and vertical applications.

PR Archives: Latest, By Company, By Date